Math 217 Fall 2025 Quiz 11 – Solutions

Dr. Samir Donmazov

- 1. Complete* the partial sentences below into precise definitions for, or precise mathematical characterizations of, the italicized term:
 - (a) Suppose V and W are vector spaces. A linear transformation $T: V \to W$ is ...

Solution: A function $T: V \to W$ such that for all $u, v \in V$ and all scalars α (over the underlying field),

$$T(u+v) = T(u) + T(v)$$
 and $T(\alpha v) = \alpha T(v)$.

Equivalently, $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$ for all scalars α, β and all $u, v \in V$.

(b) To say that a list of vectors (x_1, x_2, \ldots, x_d) in a vector space X is linearly independent means ...

Solution: That the only scalars a_1, \ldots, a_d satisfying

$$a_1x_1 + \cdots + a_dx_d = 0_X$$

are $a_1 = \cdots = a_d = 0$. Equivalently, no x_j can be expressed as a linear combination of the others.

(c) Suppose U is a vector space and $u_1, \ldots, u_n \in U$. The span of (u_1, \ldots, u_n) is \ldots

Solution: The set of all finite linear combinations of the vectors:

$$\operatorname{span}\{u_1,\ldots,u_n\} = \Big\{ \sum_{i=1}^n \alpha_i u_i \mid \alpha_1,\ldots,\alpha_n \in \mathbb{F} \Big\},\,$$

where \mathbb{F} is the underlying field. It is the smallest subspace of U containing all u_i .

2. Suppose the list (\vec{v}_1, \vec{v}_2) of vectors in a vector space V is linearly independent. Show that \vec{v}_1 is not a scalar multiple of \vec{v}_2 and \vec{v}_2 is not a scalar multiple of \vec{v}_1 .

Solution: Assume that (\vec{v}_1, \vec{v}_2) is linearly independent. Assume to the contrary that \vec{v}_1 is a scalar multiple of \vec{v}_2 , say $\vec{v}_1 = \lambda \vec{v}_2$ for some scalar λ . Then

$$\vec{v}_1 - \lambda \vec{v}_2 = 0 \implies 1 \cdot \vec{v}_1 + (-\lambda) \cdot \vec{v}_2 = 0.$$

^{*}For full credit, please write out fully what you mean instead of using shorthand phrases.

Since (\vec{v}_1, \vec{v}_2) is linearly independent, the only linear relation is the trivial one, so the coefficients must be 1 = 0 and $-\lambda = 0$, a contradiction. Hence \vec{v}_1 is not a scalar multiple of \vec{v}_2 . The same argument with the roles reversed shows \vec{v}_2 is not a scalar multiple of \vec{v}_1 .

- 3. True or False. If you answer true, then state TRUE. If you answer false, then state FALSE. Justify your answer with either a short proof or an explicit counterexample.
 - (a) Suppose V and W are vector spaces, $T: V \to W$ is a linear transformation, and $\vec{0}_V$ is the zero vector in V. If $\ker(T) = {\vec{0}_V}$, then T is bijective.

Solution: FALSE. $\ker(T) = \{0\}$ means T is injective, but not necessarily surjective. Counterexample: Let $T: \mathbb{R} \to \mathbb{R}^2$ be $T(t) = (t,0)^T$. Then $\ker(T) = \{0\}$, so T is injective, but $\operatorname{Im}(T) = \{(t,0): t \in \mathbb{R}\}$ is a proper subspace of \mathbb{R}^2 , so T is not surjective and hence not bijective.

(b) The list $\begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix}$ of vectors in \mathbb{R}^3 is linearly independent.

Solution: TRUE. Suppose

$$a \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Comparing coordinates gives

$$\begin{cases} a+b+c=0 & \text{(first)} \\ a+c=0 & \text{(second)} \implies c=0, \ a=0, \ b=0. \\ c=0 & \text{(third)} \end{cases}$$

Hence the only solution is a = b = c = 0, so the vectors are linearly independent.